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Abstract
The benefit of using in situ ultrahigh vacuum ferromagnetic resonance (FMR)
to study exchange coupled magnetic films is demonstrated. Structurally well
defined trilayer systems consisting of two ultrathin magnetic films (Ni or Co)
separated by a non-magnetic Cu spacer layer are examined. The stepwise
construction of the sample reveals how the single uniform resonance mode of
the bottom magnetic layer is influenced upon depositing the second layer on
top. The coupling leads to an acoustical and an optical mode. The positions,
intensities and linewidths of these modes are compared to theory which uses
a continuum approach in the framework of the Landau–Lifshitz equation of
motion. We discuss how to determine the coupling strength in absolute units
which for our trilayers ranges from a few to about 100 µeV/atom and then
systematically investigate the parameters that influence this coupling. The
effect of the spacer thickness and its roughness is studied in detail with the
help of scanning tunnelling microscopy to obtain a realistic and quantitative
picture of the spacer morphology. In a next step we investigate the influence
of a non-magnetic overlayer usually used as a protection layer. For small
coupling strengths such a capping layer can change the sign of the coupling. The
temperature dependence of the coupling in the framework of existing theoretical
models is discussed. Moreover, the resonance method is used to address via the
linewidth the dynamical response of the magnetic layers upon being coupled. It
is demonstrated that 2D spin fluctuations originating from one layer influence
the damping properties within the other. To support the results obtained from
the FMR, the measurements are complemented by magneto-optic Kerr effect
experiments on the same systems.
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1. Introduction

Since the antiferromagnetic coupling between ferromagnetic films mediated through non-
magnetic spacer layers in multilayered structures was discovered [1], a lot of experimental and
theoretical effort has been made to understand the basic mechanism on a microscopic scale.
The so-called trilayer consisting of only two ferromagnetic films plays an important role,
because it is the prototype system to investigate interlayer coupling. Not only is the T = 0
ground state of practical and fundamental importance, but also the low �q-vector spin wave
spectrum. In contrast to electron excitations and femtosecond spectroscopies, which probe
magnetic properties in a hot electron gas, the ferromagnetic resonance (FMR) is the technique
of choice [2] to investigate the thermodynamic ground state and its thermal excitations, i.e. low
energy spin waves. The effective medium theory can be applied to calculate the excitations
in this regime [3]. This approach assumes that the wavelength of the spin wave excitation is
long compared to the size of the unit cell within the multilayer, so that the amplitude of the
wave is constant over the unit cell. In this limit the paper discusses the various properties that
can be derived from FMR experiments on exchange coupled films. Moreover, the advantage
of performing the film preparation and the FMR measurements in situ is demonstrated. Only
then is it possible to measure in a first step the single magnetic film and in a second step after
depositing the second magnetic layer the coupled system [4]. In section 2 a brief overview of
the theory of interlayer coupling is given and the most frequently used experimental techniques
to study such coupling in multilayers are summarized. The dispersion relation of a system
of N ultrathin films coupled through non-magnetic spacer layers is derived in section 3. In
addition to the fields for resonance we calculate the whole absorption signal for an arbitrary
direction of the external magnetic field for an out-of-plane angular dependence. In section 4
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we present experimental details concerning the film preparation and magnetic measurements.
In section 5 the theoretical predictions for single magnetic films (N = 1) as well as for trilayers
(N = 2) are discussed and compared to our experiments. In particular, we demonstrate how
the presence of a coupling field changes the resonance fields and the intensities of the individual
magnetic layers. Finally, we show in section 6 how the temperature, the spacer thickness, the
spacer roughness and an overlayer influence the coupling. Moreover, the linewidth in coupled
systems is addressed.

2. Interlayer coupling in ultrathin magnetic films

Various theoretical approaches used to discuss the observed properties of coupled systems exist,
each of them having advantages in describing special features [5]. Most theories focus on the
oscillatory character of the coupling as a function of the spacer thickness and successfully
explain the observed periods of the oscillatory behaviour. The predictions about the phase and
the absolute strength of the interaction are often poorly reproduced in the experiment. Another
aspect is the temperature dependence of the coupling for which different models exist [5–7].
Concerning the experimental methods which are used to investigate coupled systems one has
to distinguish between the several techniques which only measure a quantity proportional
to the coupling and other techniques which can also be used to deduce the absolute value.
In the following a brief summary of existing theoretical approaches is given, followed by a
comparison of the experimental methods used in the field of coupled ultrathin films.

2.1. Theoretical approaches

Basically two different approaches can be distinguished:

(i) total energy calculations which compute the energy difference between parallel and
antiparallel alignment of the neighbouring magnetic layers using either tight-binding or
ab initio methods and

(ii) model calculations in which a model is applied to characterize the interaction.

Method (i) is usually very complicated, since the energy difference between the two
configurations is very small (of the order of 1 meV) compared to the total energy itself, so that
numerical convergence of the calculation becomes a problem. As a consequence in most cases
only small layer thicknesses are addressed. Model calculations (ii) on the other hand can also
be applied to thicker films and in most cases end in analytical results. Therefore, they give
transparent physical pictures which numerical total-energy calculations often do not provide.
Several models have been used. The most popular ones are the following.

(i) The Ruderman–Kittel–Kasuya–Yosida (RKKY) model, which was originally developed
by Ruderman and Kittel [8] to explain the interaction of nuclear magnetic moments
mediated by conduction electrons. Kasuya [9] and Yosida [10] extended it to the case of
electronic magnetic moments. In the RKKY framework the magnetic layers are described
by localized spins. Spin �Si

n located at site �Rn in magnetic layer i interacts via a contact
potential U = Aδ(�r − �Rn)�s · �Si

n with a conduction electron in the spacer with spin �s located
at position �r . The parameter A describes the strength of the coupling. Using second order
perturbation theory the effective interaction between the spins �Si

n and �Si+1
m of adjacent

magnetic layers i and i + 1 can be written as Un,m = Jn,m �Si
n · �Si+1

m . This expression has
the same form as the Heisenberg exchange between two spins in one magnetic film, but
Jn,m has to be distinguished from the temperature independent exchange integral of the
Heisenberg interaction. Summing up all Jn,m-values one gets the interaction energy of



R196 Topical Review

two adjacent layers J n,m
inter . In addition, for single-domain films (see section 3.1) all spins

are aligned almost parallel and the spins sum up to uniform magnetization vectors �Mn and
�Mm . Then, the total energy of the coupled system due to the coupling may be written as

Uex = J n,m
inter

�Mn · �Mm and J n,m
inter now describes the energy difference between parallel and

antiparallel alignment of the two magnetization vectors.
(ii) The sd-mixing model using an Anderson Hamiltonian [11]. Within a Friedel–Anderson

picture this method was developed to describe the coupling of magnetic impurities in dilute
alloys where the localized energy states of the impurity are broadened by hybridization
with the conduction electrons of the host material (sd mixing) which induces an oscillatory
spin polarization around the impurity. The advantage of this approach is the more realistic
treatment of the interaction between the localized states and the conduction electrons
compared to e.g. the interaction via a contact potential used in RKKY methods. Therefore,
the strength and the phase of the oscillatory coupling can be predicted in a much better
way. However, the calculations are more complicated and physically less transparent.

(iii) The hole confinement model [12], where spin dependent potential steps are introduced at
the interfaces of the spacer to the ferromagnets.

A detailed overview over models (i)–(iii) is given in the work of Bruno [5] and references
therein. Despite the different approaches a lot of predictions are supported by all models. The
most important results concerning this paper will be discussed separately for T = 0 and for
T �= 0 in the following sections.

2.1.1. T = 0. At T = 0 one can write the coupling as
Jinter

Jinter,0
∼ 1

d2

∑
j

sin(ks
j d + φ j ). (1)

Here Jinter,0 is the value of Jinter at T = 0, the ks
j give the oscillation periods, φ j are the phases

and d is the spacer thickness. Due to its discrete nature the spacer thickness can only be a
multiple of the interlayer spacing dinter , i.e. d = (l + 1) dinter where l is the number of atomic
layers. In the following we use the term monolayer (ML) for d = 1 dinter . Equation (1) shows
that the oscillation periods of the coupling depend only on the characteristics of the Fermi
surface of the spacer material. They are given by extremal spanning vectors of the Fermi
surface ks

j [5, 13, 14]. In particular, the number of periods increases as the in-plane density of
the spacer-atoms decreases [5]. This is observed in experiments for Cu spacers, where a single
period is found for the (111)-, two periods for the (001)- and three for the (110)-orientation.
The two predicted periods for Cu(001), the spacer material throughout this paper, are 2.56
and 5.88 ML. The intensities and phases φ j depend on the Fermi surface characteristics of the
spacer as well, but also on the interaction between the conduction electrons in the spacer and
the spins in the magnetic layers [5, 11]. Therefore, to predict strength and phase a realistic
interaction potential including real band-structures must be taken into account.

2.1.2. T �= 0. Basically two different mechanisms exist to explain the temperature
dependence of the interlayer coupling.

(i) Thermally excited spin waves in the magnetic layers lead to a reduction of the effective
interlayer exchange [6]. In this model the characteristic quantity influencing the
temperature dependence is given by TC , and Jinter as a function of T is

Jinter

Jinter,0
= 1 − a

(
T

TC

)3/2

(2)

where a is of order unity [6].
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(ii) Thermal excitations of electron–hole pairs across the Fermi level in the spacer
material [5, 7]. These excitations are described by the rounding of the Fermi–Dirac
distribution function at elevated temperatures which leads to a decrease of the effective
coupling between the magnetic layers given by Jinter

Jinter

Jinter,0
= T/T0

sinh(T/T0)
(3)

where T0 = (h̄vF )/(2πkBd) is the value which determines the functional behaviour. vF ,
the only temperature dependent quantity within T0, is the Fermi velocity of the carriers
in the spacer with thickness d . In this model the coupling does not necessarily vanish at
the Curie temperature TC . Large Fermi velocities vF , i.e. large T0-values, decrease the
effective temperature dependence. In particular, for noble metal spacers vF is quite large
(about 108 cm s−1) so that only a small temperature dependence in the range 1–1000 K can
be expected. Another quantity which does not explicitly enter model (i) is d . According to
model (ii) larger spacer thicknesses lead to a more pronounced temperature dependence.
Both models will be compared with experimental results in section 6.1.

2.2. Comparison of various experimental techniques used to investigate coupled magnetic
films

When discussing the techniques that can be used to investigate coupled ultrathin films, one has
to distinguish between

(i) magnetometry methods which are sensitive to the static magnetization and
(ii) others which measure the dynamical response of a magnetic system, i.e. spin wave

excitations.

Methods of category (i): common to all techniques within (i) is that they deduce the coupling
from measurements of the absolute magnetization or a quantity being proportional to it.
There exist several kinds of magnetometer like the alternating gradient magnetometer (AGM),
the vibrating sample magnetometer (VSM), the torsion oscillation magnetometer (TOM)
or magnetometers using superconducting quantum interference devices (SQUIDs) which
all measure the magnetization in absolute units. Some of these techniques have been
combined with ultrahigh vacuum (UHV) systems [15]. The magneto-optic Kerr effect (MOKE)
which is sensitive down to the submonolayer regime is one of the most commonly used
methods under UHV conditions. The Kerr signals are, however, only proportional to the
magnetization, so that one has to calibrate the system with a known bulk sample each time
a new specimen is investigated. Usually, magnetometries deduce the coupling from field
dependent measurements of the magnetization, i.e. via the analysis of hysteresis loops. For
antiferromagnetic coupling the switching field needed to align the magnetizations parallel to
each other is a direct and absolute measure of the coupling. However, this is only true if
all other parameters determining the hysteresis loop are either known or much smaller than
the coupling energy given by Jinter . Therefore, magnetic anisotropies usually complicate
the analysis of hysteresis loops, because they have to be determined simultaneously with
Jinter . For ferromagnetically coupled films, despite the sign, usually no absolute value of
the coupling can be determined, since for this case all magnetizations are aligned parallel
even at remanence. Such systems can be addressed only in special cases via the introduction
of additional magnetic layers which pin one of the two ferromagnetically coupled layers via
a stronger antiferromagnetic coupling. Finally, x-ray magnetic circular dichroism (XMCD)
should be mentioned. Again calibrating parameters are necessary to deduce the magnetic
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moments, but this technique offers the unique possibility to separate the contributions to the
magnetization within a sample due to its element specificity. In addition, it allows for several
systems to separate the spin and orbital contribution to the magnetic moment via the ‘sum-
rules’. XMCD is able to deduce values for ferro- and antiferromagnetically coupled systems.
It provides, however, only a relative value for the coupling strength [16].

Methods of category (ii): concerning the possibility of absolute magnetometry techniques
like FMR, Brillouin light-scattering (BLS) or inelastic neutron scattering are only capable of
deducing relative values for the static magnetization which can be calibrated to bulk samples.
Besides this the latter techniques give access to the spin wave spectrum which all the methods
mentioned up to now do not. In particular, FMR and BLS allow us to determine anisotropies
very precisely and, moreover, to separate the several contributions to the overall anisotropy
which from Kerr effect measurements or other static magnetometries is often not possible.
Compared to FMR the BLS results are usually less precise because the frequency resolution
of a typical BLS experiment is only about 300 MHz, whereas in an FMR measurement the
resolution is given by the linewidth of the signal being in the range of 30 MHz. After the effect
of interlayer exchange coupling was discovered, a rather new field for FMR and BLS was
created, where both were also shown to be powerful tools [1, 17, 18, 20–23]. They provide
the coupling strength in absolute units for ferro- as well as for antiferromagnetically coupled
films, whereas techniques like the MOKE or magneto-resistance measurements usually only
give access to antiferromagnetic coupling (see above). Thus, by using FMR or BLS, one can
measure the anisotropies and the coupling independently from each other. If the measurements
are performed in situ in UHV, the separation of the several parameters are even more direct,
as will be shown by our FMR experiments. FMR, BLS and inelastic neutron scattering are
complementary methods, since the difference between the three techniques lies in the range
of the wavevectors of the probed spin wave modes. FMR probes spin wave excitations with
the wavevector q = 0, i.e. excitations close to the centre of the Brillouin zone. Such modes
are called uniform, because all spins precess in phase. These modes are the ground states
corresponding to the thermal excitations, kT . BLS on the other hand excites spin wave modes
corresponding to the energy h̄ω and momentum of the incident light. Such modes are strongly
influenced by the intralayer exchange forces because the spins now present phase shifts with
respect to each other. For some cases it is also possible in FMR experiments to excite modes
having q �= 0. These modes are called magnetostatic because they have large wavelengths of
the order of the sample size, so that they are governed mainly by dipolar forces. It is important
to note that all the modes which can be addressed with FMR are non-propagating (one example
is the standing spin waves seen in micrometre films). Inelastic neutron scattering allows us to
probe q-values within the whole Brillouin zone; however, it is not usually sensitive enough to
measure down to film thicknesses of only a few atomic layers. Table 1 summarizes all features
of the different experimental methods.

Now we turn to the details of the FMR spectroscopy which is among the established
techniques to determine principal parameters of magnetic systems. Besides magnetic
anisotropies [2] the g-value, usually a tensor quantity in solids, is a rather important one
of these parameters [24].

Figure 1 shows the Zeeman splitting of a twofold degenerate energy level by �H0. A
microwave field �hr f with frequency f which is coupled into the cavity at right angles to the
static field will induce transitions between the two levels N1 and N2. The spin system will
absorb microwave power and thus produce an FMR signal if h f = gµB Hres , Hres being the
resonance field. With the gyromagnetic ratio γ = gµB/h̄ (γ /2π = 2.8 GHz kOe−1 for g = 2)
one can write this resonance condition as 2π f = γ Hres . The frequency of the microwave
typically lies in the gigahertz range. Consequently, the energy transfer is small leading to



Topical Review R199

1
2- g HµΒ res

+1
2 g HµΒ resE

ne
rg

y

H00

hf
 =  

Hres

N2

N1

g
H

µ Β
re

s

m =S

+1/2

-1/2
∆Hpp

hf

Figure 1. Schematic diagram of ferromagnetic (paramagnetic) resonance.

Table 1. Comparison between different experimental methods to investigate ferromagnetic (FM)
and antiferromagnetic (AFM) coupled films. q is the wavevector of the probed spin waves.

Measure of Jinter

Method Magnetometry AFM FM Spin wave dispersion

MOKE Relative Absolute Relative No
XMCD Relative Relative Relative No
SQUID, VSM,
AGM, TOM Absolute Absolute Relative No
BLS Relative Absolute Absolute q ≈ 1 × 107 m−1

FMR Relative Absolute Absolute q ≈ 0

a high resolution within an FMR experiment. The FMR signal provides three quantities:
Hres , the linewidth �Hpp and the resonance intensity I , being the integral of the absorption
signal. The analysis of �Hpp allows us to study magnetic relaxation processes [25]. I is a
measure of the sample magnetization [18]. The number of magnetic moments which are still
detectable is of the order of 1010–1014. This corresponds to film thicknesses of 1–104 ML on
a 1 cm2 sample and shows that the sensitivity of FMR allows us to investigate bulk samples
as well as systems down to film thicknesses of a single atomic layer. Because of the large
quantum numbers involved in the transition between N1 and N2 one can use a classical picture
to describe the resonance phenomenon. Due to the presence of �H0 the spins within the sample
will precess about the field direction with the Larmor frequency fL . This precession produces
an oscillatory magnetic moment normal to the static field, so that an external microwave field
�hr f of frequency fL perpendicular to the static field produces magnetic dipole transitions M1.
Instead of varying the frequency, in most cases a fixed frequency f is used and the resonance
is achieved by increasing the static field H0. In the following we show how FMR is used to
investigate coupled ferromagnetic layers and what detailed information can be obtained.

3. Ferromagnetic resonance in exchange coupled films

3.1. Dynamical equation of motion in the ultrathin film limit

Two methods have been applied to analyse FMR in coupled films:

(i) the energy method introduced by Smit and Beljers [26] and
(ii) the vectorial formalism given by the LL equation of motion [27].
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Method (i) was used in [20, 22, 23]; it simplifies the mathematical apparatus compared to (ii).
It has the disadvantage that only the mode positions (resonance fields) are obtained. The
intensities and the linewidths of the modes, i.e. the whole resonance signal, can be deduced
additionally in the LL formalism. We apply the LL equation of motion within this paper. For
a single magnetic moment �µn arising from a spin �Sn located at the site of the nth atom in a
magnetic specimen, the LL equation is written as

− 1

γ

d �µn

dt
= �µn × ( �H ef f

µn
+ �H0 + �hr f

µn

)
. (4)

�H ef f
µn is the effective internal magnetic field inside the sample, which is added to the external

one �H0. �hr f
µn is the high frequency magnetic field generated by the microwaves at the position of

the magnetic moment. The expression on the right-hand side of equation (4) is the torque acting
on the atomic moment �µn . In general one starts to calculate the FMR signal by combining
equation (4) with Maxwell’s equations for the electric and magnetic fields within the sample
Then one solves a boundary problem appropriate for the experimental geometry. To find such
a solution for a film of arbitrary thickness is very difficult. However, the calculation of the
lineshape can be simplified for the case of an ultrathin film, i.e. when the film thickness is small

compared to the exchange length Lexch =
√

A/2π M2
S and the skin depth Lskin = c/

√
2πµωσ .

Here A is the exchange stiffness, MS the saturation magnetization,µ the magnetic permeability,
ω the circular microwave frequency and σ the conductivity. The first condition implies that
the strong exchange interactions keep all magnetic moments parallel across the specimen,
so that the film can be regarded as a giant molecule. The second condition causes the
electric and magnetic fields to be constant across the sample. For Ni, Co and Fe one has
Lexch ≈ 30–70 Å and Lskin ≈ 300 Å at a frequency of 9 GHz. Since the thicknesses
of the magnetic layers within this paper are less than 20 Å, our films can be considered as
ultrathin. Therefore, all moments in equation (4) are summed up across the film thickness.
With �µt = ∑ �µn being the total magnetic moment, equation (4) becomes

d �µt

dt
= −γ

(
�µt ×

∑
n

µn

µt

�H ef f
µn

+ �H0 + �hr f

)
. (5)

The term on the right-hand side defines the macroscopic effective field �H ef f = ∑
n

µn

µt
�H ef f
µn

and represents the overall internal magnetic field acting upon the total moment �µt . �hr f is
constant over the sample. Considering the macroscopic magnetization �M = �µt/V (V is
sample volume), the macroscopic equation of motion can be written as

d �M
dt

= −γ �M × ( �H ef f + �H0 + �hr f
)
. (6)

For diluted paramagnetic samples �H ef f = 0, so that the torque is only produced by the external
magnetic field �H0. In a ferromagnet, however, internal fields have to be added.

3.2. Dispersion relation for N ultrathin magnetic films

Now the dispersion relation for a layered structure consisting of N magnetic layers separated
by non-magnetic spacer layers (see figure 2) is derived. In this scheme the trilayer for N = 2
can be considered as the prototype. The following assumptions are made within our model.

(i) All layers are ultrathin, so that one can apply the LL equation of motion, equation (6).
This is equal to assuming that only the lowest order spin-wave mode across each magnetic
layer is excited. To excite higher order spin-wave modes with q⊥ �= 0 in ultrathin films
much larger external magnetic fields (>103 kOe) are needed.
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Figure 2. Coordinate system used to describe the N exchange coupled ultrathin films. θH/ i (ϕH/ i )
corresponds to the polar (azimuthal) orientation of �H0 and �Mi with i = 1, . . . , N .

(ii) A uniform microwave field �hr f across the film plane is assumed. This implies that no
spatial variation parallel to the film plane occurs or, in other words, spin-wave modes
having an in-plane wavevector q‖ �= 0 are not excited.
(i) and (ii) only allow the uniform precession ( q‖ = q⊥ = 0) within the layers.

(iii) Because q‖ = 0 the dipole–dipole interaction between two magnetic layers vanishes, since
only for q‖ �= 0 would the motion of the spins produce stray fields which leak out of the
films and subsequently couple the films through dipolar forces.

Therefore, q‖ = 0 implies that only exchange interactions produce a coupling between the
layers. Here exchange interaction has to be understood in the framework of the discussion in
section 2.1. This interlayer exchange is considered to be equivalent to an extra torque acting
on the surface spins of each magnetic layer and can be replaced by an effective exchange field
which is introduced in the LL equation of motion. Thus, the coupling acts on the layer like an
extra magnetic field which for ultrathin films can be assumed to be uniform.

Figure 2 shows the coordinate system which is appropriate for our experimental geometry.
The magnetic films with thicknesses di lie in the x/y-plane with x and y being the [11̄0]- and
the [110]-direction, respectively. They have magnetizations �Mi forming an angle θi with the
z-axis, being the film normal. The in-plane angles ϕi are measured with respect to the in-plane
[100]-direction. The external magnetic field �H0 can be continuously rotated in the y/z-plane
given by the angle θH measured with respect to the z-axis. The microwave field �hr f oscillates
along the x-direction. Only small deviations from the equilibrium positions are considered or,
in other words, hr f � H0. Then, in equilibrium �Mi = �MS,i , where �MS,i are the saturation
magnetization values. In this section we assume that due to the presence of the external field
�H0 all the �Mi are restricted to the y/z-plane. This restriction can be dropped in our calculations

without problems, but it allows us to keep the calculations simple and illustrative. Other cases
(e.g. the one where the magnetizations are restricted to the film plane) can be treated in analogy
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to the case presented here. In addition, the restriction is appropriate for most of the systems
investigated in this paper, because they have an in-plane easy axis along the [110]-direction
(y-axis).

The first step is to calculate the equilibrium positions θ0
i of the magnetizations �Mi in each

film i for a given external field. For this the total free energy density F per unit area has to be
a minimum, i.e. the θ0

i -values are given by the set of N coupled equations

∂ F

∂θi
= 0 (7)

from which the equilibrium angles for the general case have to be determined numerically.
It should be noted that, upon knowing the θ0

i -values, one can already calculate the overall
magnetization component along the direction of the applied field �H0 by adding all contributions
of the individual films

M(H0)

MS
=

∑N
i=1 Mi cos(θ0

i − θH )∑N
i=1 Mi

. (8)

This formula can be used as a simple approach to analyse Kerr-effect measurements, but since
it is assumed that the system always approaches its equilibrium, no hysteresis effects can be
modelled. To calculate the dynamical response which one needs to analyse the FMR absorption
signal, the time dependent components of the magnetization vectors have to be evaluated. F
can be written as

F =
N∑

i=1

UZ,i + Ui . (9)

Here UZ,i = −di �Mi · �H0 is the Zeeman energy per unit area

UZ,i = −di Mi H0 cos(θi − θH ) = −di Mi H0(cos θH cos θi + sin θH sin θi). (10)

Ui is the internal total energy density in the magnetic layers. For our systems three basic
contributions within Ui are considered:

Ui = UA,i + Udip,i + Uex,i . (11)

UA,i is the anisotropy energy density. The thin films which are investigated throughout
this paper are tetragonally distorted due to their pseudomorphic growth upon the substrate.
Thus, a non-zero second order perpendicular uniaxial anisotropy term K2 is created by the
vertical lattice distortion. The in-plane and out-of-plane axes are now inequivalent, so that
the term K4 will split into a fourfold in-plane term K4‖ and a fourfold perpendicular term
K4⊥. Therefore, the anisotropy energy for one tetragonally distorted film has to be written as
UA ∝ −K2α

2
z − 1

2 K4‖(α2
x + α2

y)− 1
2 K4⊥α2

z . Here αx , αy and αz are the direction cosines of the
�Mi with respect to the cubic [100], [010] and [001] crystallographic axes [2]. We will, however,

show that for the special thickness range of our films, the K4-terms are smaller by at least a factor
of ten than the uniaxial K2-term. In general the K4-terms cannot be neglected [2]. By leaving
only the uniaxial terms, which may be written as uniaxial anisotropy fields Hu,i = 2K2,i/Mi ,
and by taking into account that for our coordinate system α2

z,i = M2
z,i /M2

i = cos2 θi , one can
write UA,i in a similar form to the Zeeman term

UA,i = −di Mi
1
2 Hu,i cos2 θi . (12)

In our notation Hu,i > 0 indicates a preferential direction of the �Mi along the uniaxial
axis, whereas Hu,i < 0 leads to an energy minimum for �Mi in the film plane. Udip,i is
the demagnetizing energy

Udip,i = di 2π M2
z,i = −di Mi

1
2 Hdip,i cos2 θi . (13)
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Hdip,i = −4π Mi are the demagnetizing fields of the layers resulting from the magnetic charge
density that develops if the magnetizations are rotated out of the film plane. As a consequence
Udip,i always has its minimum for �Mi lying in the film plane. The resonance position is
determined by the sum of Hdip,i and Hu,i . Therefore, it is useful to introduce the effective
magnetization Me f f,i = 2K2,i /Mi − 4π Mi . A negative value of Me f f,i indicates an easy axis
in the film plane, whereas a positive one shows an easy axis along the film normal.

Finally, Uex,i is the interlayer exchange coupling energy of layer i arising from the
interaction with the neighbouring layers i − 1 and i + 1 as introduced in section 2.1

Uex,i = −J i,i−1
inter

�Mi · �Mi−1

Mi Mi−1
− J i,i+1

inter

�Mi · �Mi+1

Mi Mi+1
. (14)

Here J i,i−1
inter and J i,i+1

inter are the bilinear interlayer exchange coupling constants between film
i and i − 1 and i and i + 1, respectively. Positive values of Jinter indicate ferromagnetic
coupling whereas negative ones antiferromagnetic coupling. As discussed in section 2.1 Jinter

is a measure of the energy, normalized to a unit area, between the parallel and the antiparallel
state of the two magnetizations. It would be possible to introduce higher order terms of the
coupling like the biquadratic coupling which favours a 90◦ alignment of the two �Mi . Such a
coupling has been observed e.g. in Fe/Cr/Fe structures, where it was shown to be quite strong,
reaching values even comparable to Jinter [23]. For our systems, however, the biquadratic term
plays a negligible role. At this point the role of exchange fields within the layers, i.e. intralayer
exchange fields, shall be discussed. A spatial variation of the precessing angles of the spins
inside the magnetic layers would create intralayer exchange torques which alter the resonance
condition. As discussed above (section 3.1), for ultrathin films such variations give only a
negligibly small correction to the resonance condition [18].

To continue the calculation one introduces a new Cartesian coordinate system which is
obtained from the x/y/z-system of figure 2 by rotation about the x-axis, so that the z′-axis
coincides with the time independent saturation magnetization �MS,i as shown in the inset of
figure 2. Then, the new x ′-axis coincides with the x-axis. Due to the high frequency microwave
field the total magnetization �Mi precesses around the z′-axis. When �mi(t) = (mx′ ,i , m y′,i , 0)

denotes the time dependent contribution to �Mi , �Mi (t) can be written in the x ′/y ′/z′-system as
�Mi (t) = (mx′ ,i (t), m y′,i (t), MS,i ). (15)

The transformation from the original variables is given by
Mx,i (t) = mx′ ,i (t)

My,i (t) = m y′,i (t) cos θi + MS,i sin θi

Mz,i (t) = −m y′,i(t) sin θi + MS,i cos θi .

(16)

In the same way as the magnetizations, the effective fields within the layers in the x ′/y ′/z′-
system become

�H ef f
i (t) = (

H ef f
x′,i (t), H ef f

y′,i (t), H ef f
z′,i (t)

)
. (17)

�H ef f
i , needed for the LL equation of motion, is related to Ui by

H ef f
α,i = − 1

di

∂Ui

∂Mα,i

∣∣∣∣
θi =θ 0

i

, α = x ′, y ′, z′. (18)

By using equations (11), (16) and (18) the components of the effective field are

H ef f
x′,i (t) = J i,i−1

inter

mx′ ,i−1(t)

MS,i−1 MS,i di
+ J i,i+1

inter

mx′ ,i+1(t)

MS,i+1 MS,i di

H ef f
y′,i (t) = a0m y′,i−1(t) + b0m y′,i (t) + c0m y′,i+1(t) + d0 MS,i−1 − e0 MS,i + f0 MS,i+1

H ef f
z′,i (t) = −d0m y′,i−1(t) − e0m y′,i (t) − f0m y′,i+1(t) + a0 MS,i−1 + b0 MS,i + c0 MS,i+1.

(19)
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Here

a0 = J i,i−1
inter

cos(θ0
i−1 − θ0

i )

MS,i−1 MS,i di
, b0 = Me f f,i

sin2 θ0
i

MS,i

c0 = J i,i+1
inter

cos(θ0
i+1 − θ0

i )

MS,i+1 MS,i di
, d0 = J i,i−1

inter

sin(θ0
i−1 − θ0

i )

MS,i−1 MS,i di

e0 = Me f f,i
sin 2θ0

i

2MS,i
, f0 = J i,i+1

inter

sin(θ0
i+1 − θ0

i )

MS,i+1 MS,i di
.

(20)

Inserting equation (19) into the LL equation of motion (equation (6)), assuming an eiωt -
dependence for �mi (t) and substituting for the derivatives provides

b1m y′,i−1 + c1mx′ ,i + d1m y′,i + f1m y′,i+1 = 0

a2mx′ ,i−1 + c2mx′ ,i + d2m y′,i + e2mx′ ,i+1 = MS,i hr f,x
(21)

where

c1 = d2 = − iω

γ
, b1 = −a2 = f1 = −e2 = Jinter

MSd
,

c2 = 2Jinter

MSd
+ Me f f,i cos2 θ0

i + H0 cos(θ0
i − θH ),

d1 = −2Jinter

MSd
− Me f f,i cos 2θ0

i − H0 cos(θ0
i − θH ).

(22)

Equation (21) describes a 2N × 2N system of equations from which the mx′ ,i and m y′,i and
then, via equation (15), �Mi (t) can be calculated. The transformation of the components of �Mi

into the x/y/z-system is done with the help of equation (16). The FMR absorption signal,
i.e. the absorbed microwave power P , can then be obtained by

P ∝
N∑

i=1

Re

(
h∗

r f,x

dmx′,i

dt

)
. (23)

Taking into account that hr f,x , mx′ ,i ∝ exp(iωt), one can also write in the more commonly
used form

P ∝ ωh2
r f,x

N∑
i=1

Im

(
mx′ ,i

hr f,x

)
(24)

with χx′ ,i = mx′ ,i/hr f,x the component of the high frequency susceptibility along the
microwave field2.

Before applying the results to our experiment, the explicit expressions for the cases of
a single film (N = 1) and the trilayer (N = 2) are given. For the single film equation (21)
reduces with θ0

1 := θ to
iω

γ
mx′ + [H0 cos(θ − θH ) + Me f f cos 2θ ]m y′ = 0

[H0 cos(θ − θH ) + Me f f cos2 θ ]mx′ − iω

γ
m y′ = MShr f,x .

(25)

For the trilayer one calculates from equation (21)

c1mx′ ,i + d1m y′,i + f1m y′,i+1 = 0

c2mx′,i + d2m y′,i + e2mx′,i+1 = MS,i hr f,x .
(26)

2 One should note that in order to keep the presentation more illustrative no damping term has been considered in
the equation of motion (equation (6)). Therefore, χx ′,i has no imaginary part, i.e. no energy dissipation takes place.
Consequently, no microwave power is absorbed in the sample, so that P = 0 in equation (24). Strictly speaking,
equation (21) can only be used to calculate resonance fields. Damping will be considered in section 6.2.
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3.3. Single film

In the following, we will discuss the FMR resonance field for a single film. We calculate
f (H0) for various angles of the external field, using realistic values for the magnetization and
anisotropy of the film.

Taking into account that x = x ′ one can deduce the rf susceptibility χx = mx/hr f,x from
equation (25)

χx = MS[H0 cos(θ − θH ) + Me f f cos(2θ)]

[H0 cos(θ − θH ) + Me f f cos2 θ ][H0 cos(θ − θH ) + Me f f cos 2θ ] − (
ω2

γ 2

) . (27)

This equation can be used to simulate FMR signals for single films and for an arbitrary angle
θH of the magnetic field, when it is inserted into equation (24). To simulate the whole FMR
line, however, damping has to be included as shown (e.g. [18]). The resonance condition is
obtained by setting the denominator equal to zero(

ω

γ

)2

= [H0 cos(θ − θH ) + Me f f cos2 θ ][H0 cos(θ − θH ) + Mef f cos 2θ ]. (28)

The changes to the resonance condition when K4-terms and/or a rotation of the external field
�H0 within the film plane is included are discussed in [2]. From the resonance condition the

resonance field is obtained, and therefore equation (28) can be used to fit angular dependent
FMR measurements, once the equilibrium angle θ of the magnetization has been determined
from equation (7). For the special cases where the external field is applied in the film plane
(θH = 90◦) which, in addition, is the easy axis of magnetization (θ = 90◦), equation (28)
reduces to (

ω

γ

)2

= H0[H0 − Me f f ]. (29)

If the external field is applied along the film normal (θH = 0◦), which is an easy axis (θ = 0◦),
equation (28) yields(

ω

γ

)
= H0 + Me f f . (30)

If one does not measure along an easy axis, the internal field is not parallel to the external
one. Equation (7) may then result in two energy minima. One minimum occurs for field
values which are large compared to the internal fields. In this case the external field and
the magnetization are parallel. The other minimum occurs for field values which are smaller
than the internal fields. Now the magnetization is not parallel to the external field so that,
at resonance, the magnetization precesses about the internal field direction. Figure 3 shows
the resonance frequency as a function of the external field for a system with easy axis out of
plane (left-hand panel) and one having an easy axis in plane (right-hand panel) as predicted
by equation (28). The figure illustrates the difference between measuring along an easy and
a hard axis for the two cases. The angle θH of the external field according to figure 2 is
given as a parameter. A film with magnetization of M = 0.485 kG (value of bulk Ni at room
temperature) has been assumed. Furthermore, no in-plane anisotropy is considered, since we
focus on the out-of-plane angular dependence, i.e. the external field �H0 is rotated only within
the y/z-plane (see figure 2). Since the shape anisotropy 2π M2

z already creates an easy axis
within the isotropic film plane (θ = 90◦), no intrinsic out-of-plane anisotropy given by K2

is needed for an easy in-plane system and was therefore neglected in the right-hand panel of
figure 3. To create an easy axis along the film normal, however, one needs an out-of-plane
anisotropy which overcomes the shape anisotropy, i.e. Me f f has to become positive. In the
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Figure 3. Resonance frequency as a function of the external field for a film having an easy axis
out of plane (a) and an easy axis in plane (b) for several orientations of the external magnetic field
θH .

left-hand panel of figure 3 it was therefore necessary to include a K2-term with positive sign,
K2 = 14.3 µeV/atom. The FMR measurements are made at fixed frequency, so that the
points where the microwave level (dashed line for f = 9 GHz) crosses the calculated curves
give the resonance positions for this particular frequency. For θ = 90◦ (right-hand panel)
and for all angles of the external field only one Hres is possible. While rotating the external
field out of the film plane the position of the resonance moves to larger fields, indicating the
easy in-plane character of the system. For an easy axis out of plane (θ = 0◦, see left-hand
panel) the occurrence of two energy minima as mentioned above leads to two resonances
when the external field points along the hard axis (θH = 90◦). One appears at small fields and
another at higher field values where the magnetization and external field are aligned parallel.
Upon rotating the field out of the film plane closer to the easy axis by only some degrees,
the resonances vanish. This leads to the situation where along the easy direction no signal
can be observed and only within a small region around the hard axis are two signals detected.
Therefore, it is impossible to measure the complete angular dependence. To avoid this, i.e. also
to have the full angular dependence for the films having an easy axis out of plane, there are
two methods.

(i) The frequency of the microwaves is increased which means upshifting the dashed line in
figure 3. This is not possible within our in situ set-up.

(ii) In figure 3 the crossing point of the left-hand branch of the curve for θ = 90◦ with the
y-axis is given by the out-of-plane anisotropy of the film.

For smaller anisotropy values this point can be brought below the microwave level, so that the
whole angular dependence is detectable. Since for ultrathin films the anisotropy is a function
of film thickness [2], this is equivalent to choosing the right film thicknesses.

Now we come to the mode intensities; the linewidth will be discussed separately in
section 6.2. When the coupling is zero (Jinter = 0) the intensity I of the microwave absorption
for each magnetic layer has to be found separately. For the external field �H0 being either in
or out of plane it is possible to give analytical expressions for I . For these two directions
the coordinate systems introduced in section 3.2 coincide. The only difference is that for the
in-plane direction the −y ′-direction has to be transformed into the z-direction by multiplying
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by −1. In the following discussion we therefore consider the x/y/z-system. For the in-plane
configuration ( �H0‖y, �hr f ‖x , the precession orbit of the magnetizations will be elliptical and
lie in the x/z-plane. For this case and for a fixed value of the microwave power I for layer i
is given by

I‖,i ∝
(∫ di

0 mx,i dz
)2

1
2MS,i

∫ di

0 (m2
x,i + m2

z,i ) dz
. (31)

By assuming that mx,i and mz,i are uniform across the film i , one can solve the integral in
equation (31)

I‖,i ∝ 2(di mx,i )
2

di
MS,i

(m2
x,i + m2

z,i )
= 2MS,i di

m2
x,i

m2
x,i + m2

z,i

= 2MS,i di

1 + (Hres,iγi/ω)2
. (32)

The quantity m2
x,i /(m

2
x,i + m2

z,i ) is called the ellipticity factor. Using the explicit expressions
for mx,i and mz,i as given by equation (25) and the resonance condition (equation (29)) for
the in-plane direction, the ellipticity factor takes the form as given by the last expression of
equation (32).

For the case where the external field is applied along the film normal, the magnetizations
precess in the x/y-plane. Now the precession will take place in a circular orbit, since there
is rotational symmetry around the film normal. In this case one takes for the time-dependent
component of the magnetizations along the microwave direction mx,i while mz,i = 0, so that
equation (31) reduces to

I⊥,i ∝
(∫ di

0 mx,i dz
)2

1
MS,i

∫ di

0 m2
x,i dz

. (33)

Assuming again that mx,i is uniform over each film, equation (33) yields

I⊥,i ∝ (di mx,i )
2

di
MS,i

m2
x,i

= MS,i di . (34)

For this case the ellipticity factor is unity. Because of equations (32) and (34) for both
the in-plane and out-of-plane geometry, the intensity of the resonance from a single film
is proportional to the saturation magnetization MS,i times the film thickness. In addition, I
is proportional to the ellipticity factor which is given by the time dependent magnetization
components. The form of the ellipticity factor shows that in order to observe a FMR mode,
the system must have a net rf magnetization component along the pumping field direction
(in our case the x-direction). The precessional motion for one single film is illustrated in
figure 4 for both geometries. For the parallel situation the ellipticity factor depends on the
resonance frequency and thus on the resonance field. For the out-of-plane geometry, for which
the ellipticity factor is constant, the intensity is independent of the two.

3.4. Trilayer and multilayer

This section discusses the case of N coupled layers (equation (21)) and focuses on the special
case N = 2 of the trilayer described by equation (26). Most of the results can be easily
extended to more magnetic layers.

3.4.1. Resonance fields. According to the number of solutions of equation (21) for N
magnetic layers there are N modes supported by the layered structure, because there is one
degree of freedom for each layer. There is one q⊥ = 0 mode, called the acoustical mode,
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Figure 4. Schematic picture of the coupled uniform precession modes for films with N = 1–3
magnetic layers. Easy axis and �H0 in plane (left) and out of plane (right), respectively.

where all the N magnetizations precess in phase, and N − 1 optical modes. With increasing
mode number there will be more magnetizations which precess out of phase until for the optical
mode with highest mode number the magnetizations in adjacent films precess out of phase.
For the special case of the trilayer (N = 2) the picture predicts two modes, an acoustical
and an optical one. For the latter the two magnetizations rotate out of phase, for the other
one in phase. In the following the positions of the modes are discussed. Figure 5 shows the
solution of equation (26). In the upper two panels the microwave frequency as a function
of H0 for ferromagnetic coupling is shown. In the literature such diagrams are often called
dispersion relations and should not be confused with plots of the frequency as a function of
the wavevector. They illustrate the results from equation (26). In (a) the behaviour for the
external field applied in the film plane is shown, whereas in (b) the out-of-plane geometry is
plotted. The frequency of f = 9 GHz used in most of our experiments is plotted as a dashed
line. The intersections of this line with the acoustical (solid line) and optical (dotted line)
mode branches define the resonance fields Hres for the two modes. In the lower two panels the
equilibrium angles θ0

1,2 and ϕ0
1,2 of the two magnetization vectors are displayed as a function

of H0 for the same trilayers as shown in (a) and (b). For simplicity two identical films with
2K2,i/Mi = 0, i.e. no intrinsic anisotropy, have been assumed in figure 5. The only term
which produces anisotropy is 4π Mi , i.e. the shape anisotropy. For the calculation and for both
films M1 = M2 = 0.485 kG, the magnetization of bulk Ni at room temperature, has been
assumed and a value of Jinter = 10.9 µeV/atom is used for the ferromagnetic coupling. For
θH = 90◦ (figure 5(a)) there are two branches. The optical branch is upshifted in frequency,
which implies that one needs higher energy to excite it. This is because in the optical mode
the two magnetizations are canted to each other, i.e. they deviate from the energy minimum
favouring a parallel alignment for all values of H0 as can be seen in figure 5(c). Therefore,
the optical mode appears at higher frequencies or, for a constant frequency, at lower resonance
fields. The mode separation is given by Hex = 2Jinter [1/(M1d1 + M2d2)]. In general the
separation is also influenced by the anisotropies of the two films (see section 5.2.1). When the
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external field is rotated out of the film plane (figure 5(b)) these results are still valid at field
values larger than the shape anisotropy. A complication arises for small external fields where
�H0 and �M1, �M2 are not parallel due to the anisotropy favouring an in-plane alignment. As

the field increases the two magnetizations gradually rotate out of the film plane (figure 5(d)).
Because of the ferromagnetic coupling both magnetizations stay parallel during this rotation.
In the dispersion relation figure 5(b) the rotation leads to the behaviour at low field values. With
increasing field the optical mode has lower frequency,whereas the acoustical mode stays at zero
frequency until the system reaches the parallel state. Figure 6 shows the dispersion relation for
the same system as discussed in figure 5. This time, however, an antiferromagnetic coupling of
Jinter = −4.5 µeV/atom was assumed. For antiferromagnetically coupled films there always
exists a region where both magnetizations are antiparallel and therefore not parallel to the
applied field. For H0 along the film plane (θH = 90◦) and starting from zero field the two
magnetizations are oriented antiparallel within the film plane. Due to the fact that both films
were assumed to have an easy in-plane character, the two magnetizations rotate within the
film plane as the field is increased. This is clearly shown in figure 6(c), where ϕ0

1,2 gradually
approach each other until the two magnetizations become aligned parallel. In order to achieve
a parallel alignment for the out-of-plane direction the external field has to surpass the shape
anisotropy which tries to keep the �Mi in the film plane. Once the magnetizations are parallel
the dispersion of figures 6(a) and (b) presents a similar behaviour as found for ferromagnetic
coupling. Again the coupling can be determined from the mode separation given again by
Hex . Compared to the ferromagnetic coupling the mode positions of optical and acoustical
modes are reversed with respect to the ferromagnetic case. Now the optical mode appears
at lower frequencies or higher resonance fields because the canted configuration has lower
energy than the parallel alignment within the acoustical mode. Thus, the relative positions of
optical and acoustical mode can be used to identify the sign of Jinter . Furthermore, the exact
mode positions reflect the absolute value of Jinter when they are analysed in the context of
equation (26) described in section 3.2.

Within an FMR experiment the frequency is fixed, so that one always operates at a constant
line parallel to the field axis in the dispersion relation (the 9 GHz line in figures 5 and 6 is
one example). Figure 7 schematically shows FMR spectra for trilayers at a fixed frequency of
9 GHz for the case where �H0 is applied in the film plane. It is assumed that the frequency is
large enough that one only probes the region where both magnetizations are aligned parallel to
�H0. The solid curves indicate the signals of two slightly different magnetic films which do not

interact. This is the situation for two films separated by an infinitely large spacer layer, where
both films have their individual resonance fields. When the spacer thickness is reduced, the
two films become coupled. As shown by the dashed lines, the coupled system presents two
eigenmodes, the acoustical and optical mode, which are formed by the uniform modes of the
individual films. It is important to note that the coupled modes do not belong to one film only.
They merely arise from both magnetic layers. Both move towards higher (lower) field values
within the coupled system for ferromagnetic (antiferromagnetic) coupling. In addition, the
intensity of the optical mode decreases, whereas more oscillator strength is coupled into the
acoustical one so that its intensity increases. For stronger coupling, i.e. larger values of Jinter

(dotted curves), both modes are even more shifted relative to the resonance fields in the uncou-
pled system and the intensity ratio between optical and acoustical modes is further decreased.

When only discussing the regime where the �Mi are parallel to the field, the extension of
the picture to more magnetic layers is straightforward, whereas for the non-parallel regime
one has to calculate the mode spectrum to analyse the data and to identify the modes and their
positions. Figure 4 illustrates the possible modes of the coupled system in the parallel regime
for N ranging from 1 to 3 and for external fields either in the film plane or normal to the film
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Figure 5. Dispersion relation for a ferromagnetically coupled trilayer for �H0 in plane ((a), (c))
and out of plane ((b), (d)). The solid (dotted) line in ((a), (b)) corresponds to the acoustical
(optical) mode. In ((c), (d)) the in-plane ((ϕ0) and out-of-plane (θ0) equilibrium angles for the two
magnetizations as a function of H0 are shown. ϕH and θH denote the direction of the external field.

Figure 6. Dispersion relation for an antiferromagnetically coupled trilayer. The notation is the
same as in figure 5.

plane. The vectors correspond to the uniform modes within a film, which become coupled
together in the multilayer. For N = 2 only one acoustical and one optical mode are possible as
has just been discussed. For N = 3 one has more possible modes. The acoustical mode where
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Figure 7. Simulation of the FMR spectrum for a ferromagnetically (left-hand panel) and
antiferromagnetically (right-hand panel) coupled trilayer. The solid spectra show the FMR signal
for the two films without coupling and the dashed and dotted spectra show the signal after
introducing a coupling with increasing strength.

all three magnetizations precess in phase is the lowest energy state for ferromagnetic coupling.
For antiferromagnetic coupling it is the highest one. The opposite behaviour shows the optical
mode where all neighbouring �Mi precess out of phase (right-hand plot in the lowest panel).
There are more possibilities realized by the two mode profiles in the middle. For these modes
which are degenerate in energy only one magnetization rotates out of phase, so that the energy
of the modes lies in between the two extreme cases. For N = 3 one therefore expects to have
three resonances and the acoustical one again is on the higher field side of the two optical ones
for ferromagnetic coupling and on the lower field side for antiferromagnetic coupling. Again
the position of the acoustical mode in the regime where �H0 and the �Mi are parallel is a well
defined criterion for the sign and value of the coupling.

3.4.2. Mode intensities. If the N films are coupled, equations (32) and (34) still describe the
intensities of the N modes provided the time dependent magnetizations �mi (t) for each of the
modes are known. Then, for a given value of Jinter , one can calculate the intensity I for each
mode by summing up the quantities given in equations (32) and (34) over the N layers. For
the in-plane configuration one has

I‖ ∝ 2
(∑N

i di mx,i
)2

∑N
i

di
MS,i

(m2
x,i + m2

z,i )
. (35)

For the out-of-plane geometry one gets

I⊥ ∝
(∑N

i di mx,i
)2

∑N
i

di
MS,i

m2
x,i

. (36)

Figure 4 can also be used to explain how the intensities of the modes will change from their value
for the non-coupled case given by the equations (32) and (34) upon increasing the value of Jinter.
While the relative position of the acoustical and optical modes depends on the sign and the value
of the coupling, the relative mode intensities only depend on the absolute value. The following
discussion is therefore valid for ferromagnetic as well as for antiferromagnetic coupling of the
films. According to equations (35) and (36) the sum of the time dependent magnetizations
determines the intensity for a resonance mode within the coupled films. Figure 4 shows the case
N = 2, i.e. for the trilayer for in- and out-of-plane geometry. When the magnetization vectors
are saturated, the in-phase (acoustical) mode leads to a large microwave absorption, since both
rf magnetizations are always aligned parallel and add up. For the optical mode, however, the
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two �mi have opposite sign and subsequently the intensity will be relatively small. When the
two films are identical, i.e. when they have the same effective magnetization Me f f , the intensity
of the optical mode will be zero. In detail the intensity of the optical mode is proportional to
the difference in effective magnetization of the two films and inversely proportional to Jinter ,
i.e. to the quantity |Me f f,1 − Me f f,2 |/Jinter . This will be discussed in section 5.2. For three
coupled films (N = 3) it is not possible that all rf magnetizations cancel to zero. Therefore,
one expects one acoustical mode and two optical ones, even for three identical films. Again the
largest intensity is coupled into the acoustical mode, whereas the optical modes have smaller
intensity (see figure 4). For a larger number of films the picture is extended accordingly. For
N identical films all modes have non-zero intensity in the case where N is an odd number,
whereas for N an even number some modes will vanish. If the films are different, all modes
can have a non-zero intensity.

4. Experimental details

Before comparing our experimental results with the theoretical predictions, the systems used
to study the interlayer coupling are introduced. The FMR measurements were performed
partially at 4 GHz, but most experiments were done at 9 GHz. Details concerning the FMR
apparatus are given in [2, 4]. Since prototype systems are needed it is particularly important
to investigate in a first step the structural properties of the systems before performing the
magnetic measurements. The film preparation and FMR measurements were performed in
a UHV system with a base pressure of 5 × 10−11 mbar. All trilayer systems were grown
on Cu(001) single-crystal substrates which have been cleaned by cyclic Ar-ion etching and
annealing to 830 K until the surface showed sharp low-energy electron-diffraction (LEED)
patterns and no detectable contamination in the Auger electron spectra could be observed.
Details of the substrate preparation are reported in [28]. Most studies on coupled 3d metals
deposited on Cu(001) are done for Fe and Co, whereas less work has been done for Ni. In
contrast to Ni and Co the growth of Fe on Cu(001) is structurally problematic [29]. Therefore,
we focus our investigations on Ni based trilayers having either two Ni layers or one substituted
by Co. In addition, we compare the results to trilayers consisting of two Co layers. The
pressure during film preparation could be kept below 2 × 10−10 mbar in the case of Co and
Ni and 3 × 10−10 mbar in the case of Cu. The growth of the 3d metals Co and Ni on Cu(001)
is well understood and allows us to produce epitaxially grown films of high quality [29].
For both cases stable face-centred cubic (fcc) structures with a tetragonal distortion, often
referred to as face-centred tetragonal (fct), are formed. The interatomic distance for bulk Cu
is 2.56 Å whereas the values for Ni and Co are 2.49 and 2.505 Å, respectively. This leads to an
in-plane lattice mismatch of 2.5% for the Ni/Cu(001)- and 2.0% for the Co/Cu(001) system and
results in a pseudomorphic growth up to more than 15 ML for both systems [30]. The growth
conditions like the deposition rate or the deposition temperature strongly influence the growth
behaviour. A slight increase of the deposition temperature can lead to a better layer-by-layer
growth but also increases the rate of interdiffusion between the film and the substrate. On the
other hand low deposition temperatures decrease the probability of intermixing, but usually
lead to three-dimensional growth due to the limited diffusion of the adatoms on the surface. For
the deposition of Ni and Co films around room temperature the intermixed area was shown to
be restricted almost to only the first ML and good layer-by-layer growth was achieved [30–33].

4.1. The Cu/Ni/Cu/Ni/Cu(001) system

During the evaporation of the trilayer structures the intensity of the specular medium-energy
electron-diffraction (MEED) spot is recorded, so that the growth can be monitored on line. As
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an example the MEED intensity during the preparation of a Cu/Ni/Cu/Ni/Cu(001) trilayer is
presented in the left-hand panel of figure 8. The lowest curve shows the MEED intensity during
the deposition of 10 ML Ni at room temperature. The intensity oscillates, indicating a good
layer-by-layer growth during the deposition of the first Ni layers, while the oscillations almost
vanish before all ten layers are evaporated. This growth of Ni on Cu(001) at room temperature
is well known and may be explained with a transition towards a three-dimensional growth
mode at around 5 ML where the Ni film starts to form quadratic pyramids. In figure 9(a) an
STM picture taken at room temperature of a 9 ML thick Ni film is shown, where one clearly
sees the pyramids having their edges along the 〈110〉-directions. After annealing the Ni film
for 10 min at T = 420 K the pyramids are removed as shown in figure 9(b) for the same film
as shown in (a). In order to have a better control of the Ni film thickness, we slightly increased
the deposition temperature to values of T = 330 K during the growth. The result is shown by
the upper curve in the left-hand panel of figure 8 where 9 ML Ni are evaporated at T = 330 K.
Comparing the MEED intensity with the one for room temperature deposition (lowest curve)
one sees that the oscillations slightly improve at higher temperatures, leading to an extension of
the oscillatory behaviour towards large film thicknesses. This indicates that the growth is less
rough, which in turn reduces the error in the thickness determination to ±0.1 ML. The next
step is to deposit the Cu spacer which is also shown in figure 8. One can hardly see two MEED
oscillations. This finding is supported by STM pictures shown in figure 9(c), where 5 ML Cu
on top of a Ni film are presented. A clear tendency towards three-dimensional growth is seen,
explaining the MEED result. For Cu it was not possible to improve the MEED oscillations
on top of Ni films even after increasing the substrate temperature. Therefore, the deposition
rate for Cu was taken from MEED oscillations found for Cu on Co/Cu(001) films (see below)
which leads to a larger uncertainty in the Cu thickness of ±0.2 ML for the Cu/Ni/Cu/Ni/Cu(001)
trilayers compared to the Ni/Cu/Co/Cu(001) systems. Prior to the deposition of the topmost
Ni film the Cu spacer was smoothened by annealing for 10 min at T = 420 K. The surface
after this process for the same Cu spacer as shown in figure 9(c) is presented in figure 9(d).
All islands are removed and the surface cannot be distinguished from the one of the Cu(001)
substrate. Auger spectra taken before and after the annealing did not show any difference,
i.e. no interdiffusion was observed. In a last step the second Ni film is deposited on top of the
Cu spacer as shown in figure 8 for a Ni film of 8 ML. It should be noted that because of its
three-dimensional growth at room temperature the Cu/Ni/Cu/Ni/Cu(001) system is also best
suited for the investigation of the influence of rough interfaces on the coupling between the two
magnetic layers which will be discussed in section 6.1. Finally, the topmost Cu cap layer is
deposited (not shown in figure 8) to ensure that the two Ni films both have Curie temperatures
close to each other, since capping layers usually reduce TC [34]. In addition, the effect of a
non-magnetic overlayer on the value of Jinter can be studied (see section 6.1).

4.2. The Ni/Cu/Co/Cu(001) system

The right-hand panel of figure 8 shows the deposition of a Ni/Cu/Co/Cu(001) trilayer which
again is controlled via MEED oscillations. The upper curve shows the deposition of 2 ML Co
onto the Cu(001) substrate leading to well defined MEED oscillations. In a next step 5 ML
Cu are evaporated on top of the Co film. Again the MEED intensity shows clear oscillations.
However, the amplitude is damped, indicating that the film starts to become three dimensional.
To smoothen the Cu spacer before the deposition of the topmost Ni film the spacer was therefore
annealed for 10 min at T = 420 K as in the case of the Cu/Ni/Cu/Ni trilayers. Auger spectra
taken before and after the annealing process showed no indication of intermixing between Co
and Cu due to the annealing. This is in accordance with experiments for Co/Cu(001) where
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Figure 8. MEED oscillations for (left-hand panel) the Cu/Ni/Cu/Ni/Cu(001) system and (right-
hand panel) the Ni/Cu/Co/Cu(001) system. The number of MLs is given as a subscript.

Figure 9. STM images taken after successively depositing (a) 9 ML Ni and (c) 5 ML Cu on
Cu(001). (b) and (d) show the surface after a 10 min annealing to T = 420 K of the films shown
in (a) and (c), respectively.



Topical Review R215

the maximum safe annealing temperature is shown to be about 450 K. Finally, 7 ML of Ni
are deposited on top of the Cu spacer (see the lowest curve in figure 8) in the same way as
described for the Cu/Ni/Cu/Ni/Cu(001) trilayer.

5. Comparison of experiment and calculation

5.1. In situ FMR in single-film systems

Before the trilayers themselves are investigated, it is useful to characterize the single-film
systems. Therefore, we have measured our films

(i) after deposition of the bottom magnetic layer and
(ii) after evaporation of the Cu spacer on top of it.

We performed temperature and angular dependent measurements. By using equation (28) the
effective field Me f f and the anisotropies can be determined from the experiment. A detailed
description of this procedure is given elsewhere [35, 36]. The angular dependent measurements
were made by changing the polar angle θH (see figure 2) of the sample. In the following the
single films are discussed with regard to the trilayers. A complete FMR study of single films
grown on Cu(001) may be found in [2] for Ni and in [18] for Co.

5.1.1. Co films. Ultrathin Co films on Cu(001) show a jump in TC at about 1.8 ML [37]
caused by bilayer island growth within the second ML [38]. Such thin layers are therefore
not well suited for well defined trilayers. On the other hand the TC of Co films thicker than
2 ML increases rapidly. To have the possibility of measuring up to TC without the problem of
intermixing, we have chosen Co films with a thickness of 2 ML which have a TC below 400 K.
In figure 10 the full out-of-plane angular dependence for 2 ML Co (a) and for the same film
after capping with 3 ML of Cu (b) measured at room temperature is shown. The insets show
FMR spectra for the indicated θH -values. For both cases and for all angles of the external
magnetic field only one resonance signal is found which is in agreement with the case of a
film having an in-plane easy axis of magnetization as discussed in figure 3(a). A fit according
to equation (28) (solid curve) is plotted together with the data. The fit yields the effective
magnetization Me f f = −42 kG for the bare Co film and Me f f = −38 kG after capping. The
negative value again indicates that the film exhibits an easy axis within the film plane (θ = 90◦).
The smaller value of Mef f after capping is mostly due to a reduction of TC leading to a reduction
of the film magnetization. To precisely determine the in-plane anisotropy given by the constant
K4‖ one would in principle need an in-plane angular dependent measurement. However, the
shape of the out-of-plane angular dependence is also influenced by K4‖ [2] and can therefore
be used to estimate the value of the in-plane term. The fits displayed in figure 10 are performed
with K4‖/M = −0.03 kG in the case of the bare Co film and K4‖/M = −0.06 kG for the
Cu capped system. Fits using no in-plane anisotropy (K4‖/M = 0 kG) included in figure 10
(dashed curves) agree less with the data. A negative K4‖ for the Co film indicates an in-plane
easy axis along the [110]-direction which is well known for this system. The values of K4‖
are much smaller than the out-of-plane anisotropy given by Me f f , and thus the resonance field
of the Co film is mostly determined by the latter.

5.1.2. Ni films. A similar behaviour to the one just described for Co is found for Ni films
on Cu(001) with thicknesses below 10–11 ML, where the film magnetization for Ni lies in the
film plane. For larger thicknesses Ni films show a spin reorientation transition (change in sign
of Mef f ) which drives the magnetization out of the film plane [2]. This transition is shifted



R216 Topical Review

Figure 10. Angular dependence for 2 ML Co on Cu(001) (a) without and (b) with Cu cap layer.
The dashed curves are fits neglecting the in-plane anisotropy term K4‖.

down to about 7.5 ML when capping the films with Cu [39]. In addition, the TC is reduced
by a Cu overlayer. The complete out-of-plane angular dependent measurement for Ni at room
temperature is shown in figure 11, where Hres as a function of θH for 8 ML of Ni/Cu(001) (a)
and 9 ML of Ni/Cu(001) (b) is plotted. In each panel we show the results before (filled circles)
and after capping the film with 4 ML of Cu (open circles). For the bare Ni films the negative
values of Me f f indicate an easy axis in plane. The smaller value of the Ni9 film3 shows that
this film is closer to the spin reorientation at about 10–11 ML, where Me f f is close to zero,
and thus the higher order anisotropy constants become important [2]. After capping the two
films with Cu the minimum of Hres moves from θH = 90◦ to 0◦. This means that the easy
axis has switched from in the film plane towards the film normal. This change of the easy
axis is also reflected in the positive sign of Mef f . Besides the sign of Me f f its value is larger
for the Cu4Ni9 film compared to the Cu4Ni8 film which means an increase of the out-of-plane
anisotropy within the Cu capped Ni films. This trend is continued with increasing Ni thickness
(figure 12).

Figure 12(b) shows the dispersion curves according to equation (28) as determined from
experimentally measured Hres-values for Ni films with thicknesses ranging between 8 and
12 ML already capped with Cu. The external field was aligned along the in-plane direction
(θH = 90◦). Thus, the crossing points of the 9 GHz line indicate the resonance fields.
Figure 12(a) shows the original FMR spectra for the smallest 8 ML and the largest 12 ML Ni

3 Here and in the following the number of MLs is given as a subscript.
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Figure 11. Angular dependence for (a) 8 and (b) 9 ML Ni on Cu(001) with (solid curve) and
without (dashed curve) Cu cap layer.

thickness. For 12 ML two resonances are observed. This behaviour can be explained with
an increase in the perpendicular anisotropy and corresponds to the case of a film having an
out-of-plane easy axis of magnetization as discussed in figure 3(b). The complete analysis
presented in figure 12(b) indicates that the positive values of Me f f increase with Ni thickness.
Therefore, two resonances are observed for thicknesses larger than 10 ML. The transition
between observing one and two signals is observed for the 10 ML film. In figure 13 this film
was measured at different temperatures in the range 300–400 K. One sees in (b) that due to the
decrease of Me f f at higher temperatures the left-hand branch of the dispersion curve moves
below the 9 GHz line, so that only one signal is observed at larger T -values. The transition
between observing one and two signals can be seen more directly in figure 13(a), where the
measured resonance fields of the film are plotted as a function of the temperature. At room
temperature one observes two signals which are also shown in the inset for T = 313 K. The
resonance field for the signal at low field values moves towards smaller fields until it vanishes
at about T = 375 K. Above 375 K only one resonance is observed as shown in the inset
for T = 380 K which stays even up to the highest temperature of 400 K. The occurrence of
more than one resonance signal in the single films complicates the analysis in the trilayers. To
avoid such problems, the Ni thicknesses were chosen to be 8–9 ML within the trilayers with
out-of-plane magnetized films.

5.2. In situ FMR in trilayer systems

5.2.1. Determination of Jinter . In section 3.4 it was shown how the coupling constant Jinter

can in principle be determined from FMR experiments. However, one has to note the following:
the analysis is usually complicated because the positions of the modes are not only determined
by the coupling alone, but are rather a function of Jinter and the anisotropies of the individual
layers. In this case the problem arises that when only a measure of the coupled system is
possible it is not easy to extract all anisotropy values from angular dependent measurements.
We therefore used a new approach which works when the films are subsequently deposited
and measured in a UHV system. After the preparation of the first magnetic layer its anisotropy
can be determined. Then, the next layer is deposited and the whole system is measured. Now
the properties of the bottom layer are known so that only the ones of the topmost film have to
be deduced. We will explain the procedure by using an example of a Cu4Ni8Cu5Ni9/Cu(001)

trilayer. In figure 14 the FMR spectra for this system measured at room temperature are
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Figure 12. Cu capped Ni films with Ni thicknesses in the range 8–12 ML. (a) Measured
resonance spectra for dNi = 8, 12 ML. (b) Frequency as a function of the external field for
dNi = 8, 9, 10, 12 ML. The curves are calculated using the experimental values of the anisotropies.
The intersection of the curves with the constant line for f = 9 GHz indicates the measured
resonance fields.

shown. The dashed line indicates the same trilayer structure, before the deposition of the
topmost Ni8 film. The angular dependence measured for this single film has already been
shown in figure 11(b). From this measurement the anisotropy of the bottom layer is obtained.
In the trilayer one observes two resonances. The larger acoustical mode is located at higher
fields with respect to the optical mode, and thus the system is coupled ferromagnetically.
This is confirmed by the polar MOKE results from the same trilayer shown in the inset. One
observes a rectangular loop showing that the two magnetizations flip together because of their
ferromagnetic coupling. Apart from the sign of the coupling the Kerr effect does not allow
us to deduce the value of Jinter . Within our in situ set-up the sign of the coupling may also
be obtained from a direct comparison of the resonance field of the single bottom layer to the
Hres-values of the modes in the trilayer. Compared to the single resonance of the bottom film
the acoustical mode in the trilayer is shifted towards lower fields. This behaviour is exactly
the one which was schematically shown in figure 7 and the shift is a measure of Jinter . To
unambiguously extract Jinter from the field shift or from the two mode positions one needs
in a last step to also deduce the anisotropy values for the topmost Ni film. Figure 15 shows
how the anisotropy of the topmost Cu4Ni8 film is determined from the full angular dependence
in the coupled system. Again the angular dependence for the bottom Cu5Ni9 film presented
already in figure 11(b) is shown as a dashed curve. In figure 15 the experimental values of
the optical (open squares) and acoustical mode (solid squares) are plotted together with a fit.
The value of Me f f = 1.136 kG is smaller than the one found for the bottom film due to the
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Figure 13. (a) Resonance fields as a function of the temperature for the two signals observed in a
10 ML thick Ni film capped by 4 ML of Cu. One of the signals vanishes at higher temperatures.
The inset shows the spectra at two temperatures. (b) Microwave frequency as a function of the
external field for various temperatures calculated for the same film as shown in (a). The calculation
was performed such that the observed resonance fields are best reproduced by the intersections of
the calculated curve with the 9 GHz line being the experimental frequency. From the calculation
the anisotropy is derived despite the fact that not all of the angular dependence could be measured.

smaller thickness of the topmost layer. The positive value indicates that the topmost film also
has an easy axis along the film normal. It is interesting to note that the angular dependence
in coupled trilayers is in principle different from those known from single films. If the two
films were uncoupled their different anisotropies would imply that one film has the larger
Hres along the hard direction, but also the smaller Hres along the easy axis. This would then
lead to a crossing of the two angular dependences at a particular angle. The dependences of
optical and acoustical modes do not cross, i.e. for all θH -values the optical mode is located
at lower Hres-values, reflecting the ferromagnetic coupling of the films. Taking the angular
dependence of the bottom film only and the one measured in the coupled system, all unknown
values influencing the Hres of optical and acoustical modes can be eliminated. Then, the only
parameter left which determines the shift is Jinter itself. For the system shown in figure 14 Jinter

equals 8.9 µeV/atom.

5.2.2. Resonance fields. A complete analysis of all resonance fields measured in
Cu4Ni8Cux Ni9/Cu(001) trilayers is presented in figure 16. The positions of the two modes
for the external field in plane as a function of Jinter are displayed. Both magnetic layers are
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Figure 14. FMR spectrum measured for a Cu4Ni8Cu5Ni9/Cu(001) trilayer (thick solid curve)
together with the spectrum taken from the bottom Cu5Ni9/Cu(001) film only (dashed curve). The
thin solid line is a fit. Inset: hysteresis loop for the same trilayer obtained from polar Kerr effect.
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Figure 15. Angular dependence of the optical (open squares) and acoustical mode (filled squares)
measured in the Cu4Ni8Cu5Ni9/Cu(001) trilayer. The dashed curve shows the angular dependence
for the bottom Cu5Ni9/Cu(001) film only (figure 11(b)).

somewhat different and consequently they present different resonance fields for Jinter = 0. The
black line corresponds to the theory for which the experimentally found anisotropy from the
angular dependent measurements of the uncoupled Cu capped Ni9 and Ni8 film (see figure 11)
was used. Upon increasing the strength of the coupling, one sees that for ferromagnetic
coupling the acoustical mode approaches a fixed point, whereas the optical mode moves towards
zero field. The trend is well reproduced by the data. For antiferromagnetic coupling (inset of
figure 16) the acoustical mode is located at lower fields compared to the optical one, but again
the acoustical mode approaches a fixed field value for large coupling. The optical mode now
moves fast towards high fields. Independent of the sign of Jinter the coupled system behaves
at large Jinter -values like a single film with an effective gyromagnetic ratio and an effective
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Figure 16. Mode position in a trilayer as a function of Jinter for ferromagnetic and
antiferromagnetic (inset) coupling. The parameters used for the calculation are given in the text.
The results from our measurements are plotted on top of the theory.

anisotropy field given by

M∗
e f f = d1 M1 Me f f,1 + d2 M2 Me f f,2

d1 M1 + d2 M2
, γ ∗ = d1 M1 + d2 M2

d1 M1/γ1 + d2 M2/γ2
. (37)

The dashed lines in figure 16 show the fixed field value according to equation (37).
Equation (37) can, for N magnetic layers, easily be extended if the numerator and denominator
are replaced by a sum over all N layers.

5.2.3. Mode intensity. The behaviour of the intensities as a function of Jinter for different
Cu4Ni8Cux Ni9/Cu(001) trilayers with �H0 along the in-plane direction is plotted for the
experimentally deduced anisotropy values in figure 17(a). The values have been normalized
to the intensity of the signal from the CuxNi9/Cu(001) film. The points indicate again our
experimentally found intensities. Figure 17(a) shows that for increasing coupling strength
more and more intensity is coupled into the acoustical mode, whereas the optical mode fades
away. The intensity of the single mode which remains for strong coupling can be shown to be
given for the in-plane geometry by

I‖ ∝ 2
∑N

i=1 MS,i di

1 + (H single
res, γ ∗/ω)2

. (38)

Here γ ∗ is given by equation (37) and H single
res is the resonance field at which, for strong

coupling, the single resonance is observed. The dashed line in figure 17(a) indicates the
intensity of the single resonance for strong coupling and was calculated via equation (38) with
N = 2. Both optical and acoustical modes follow the theory in reasonable agreement. In
particular, the acoustical mode approaches the dashed line for larger Jinter . For completeness
we give the expression for the out-of-plane geometry. Here the intensity of the single line for
strong coupling is simply the sum of the intensities of the individual layers.

I⊥ ∝
N∑

i=1

di MS,i . (39)
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( (

Figure 17. (a) Mode intensity as a function of Jinter for a trilayer. The parameters of the two
films are the same as in figure 16. (b) FMR spectra for trilayers with the same value of Jinter but
different values of Me f f .

Figure 17(a) shows that the optical mode intensity follows the 1/Jinter dependence as
discussed in section 3.4. The other prediction was that the optical mode intensity should
increase for larger values of |Me f f,1 − Me f f,2|, i.e. when the anisotropies of the two coupled
films are different. To show this effect, we plot in figure 17(b) two FMR spectra. The upper
one which has been shifted upwards for better clarity results from the Cu4Ni8Cu5Ni9/Cu(001)

trilayer already shown in figure 14. The lower spectrum was taken from a Ni6Cu5Ni9/Cu(001)

trilayer. Since 6 ML Ni on Cu(001) have an easy axis in plane [2], the anisotropy differs
much from the one of the bottom Cu5Ni9/Cu(001) film with easy axis out of plane as shown
in figure 11. The anisotropy value of the Ni6/Cu(001) was deduced to be Mef f = −4.2 kG.
The coupling for the Ni6Cu5Ni9/Cu(001) trilayer was found to be the same as the one for the
Cu4Ni8Cu5Ni9/Cu(001) trilayer. This comes from the fact that the spacer thickness is equal
for the two trilayers. Figure 17(b) clearly shows that the optical mode intensity found in the
Ni6Cu5Ni9/Cu(001) trilayer is much larger than in the Cu4Ni8Cu5Ni9/Cu(001) trilayer due to
the larger value of |Mef f,1 − Me f f,2 |, so that the optical mode has even more oscillator strength
than the acoustical one. Moreover, the anisotropy does also influence the mode separation
which is much bigger in the Ni6Cu5Ni9/Cu(001) trilayer.

6. Parameters that influence the coupling

To modify the coupling it is important to understand how it is influenced by specific parameters
like the temperature or a protection layer. In this section we discuss such parameters. We
do not aim to give a complete overview of each parameter. We rather focus on showing the
advantages that in situ FMR provides. The discussion will be split into a part which investigates
the influence on the resonance field and a second part which describes the influence on the
linewidth.

6.1. Analysis of the resonance field

6.1.1. Influence of the spacer thickness. In the following the oscillatory behaviour of the
interlayer exchange coupling given by Jinter is discussed. The values of Jinter were determined
as described in section 5.2. Figure 18 shows Jinter as a function of the spacer thickness dCu

for Cu4Ni8CuxNi9/Cu(001) (solid squares) as well as for Ni7Cux Co2/Cu(001) trilayers (open
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Figure 18. Jinter as a function of the spacer thickness dCu for all trilayer systems which were
investigated.

triangles and open circles), i.e. the magnetic layer thickness and the overlayer thickness in the
case of the Cu4Ni8Cux Ni9/Cu(001) trilayers is kept constant. The open triangles result from
XMCD measurements [16], whereas the other data result from FMR experiments. The left-
hand y-axis corresponds to the Cu/Ni/Cu/Ni system and the right-hand axis to the Ni/Cu/Co
trilayers. Note that XMCD cannot deduce the absolute value of Jinter , so that in [16] a simple
mean-field approach was used to obtain absolute values of Jinter . This approach results in
values which are too large by about two orders of magnitude so that it was necessary to scale the
XMCD data in figure 18 on the y-axis to match the correct values obtained by FMR. Figure 18
shows that after this scaling the results from both techniques are in excellent agreement showing
a clear oscillatory behaviour which, within the error bars, is the same for both systems. Upon
using the two theoretically predicted oscillation periods of 2.56 and 5.88 ML as well as the
theoretical phases for a Cu(001) spacer [5] (see also section 2.1), one ends up with the curve
shown as a solid line. The curve shows a reasonable agreement with the experiment, once the
amplitudes are scaled to match the experimental Jinter . Since only the spacer Fermi surface
defines the periods and the spacer for both systems is Cu(001), one expects the period to be the
same for both trilayer types, but interestingly also the phases for both periods are the same for
the two cases. The amplitude of the oscillations, i.e. the coupling strength of the two systems,
shows that for the Ni7CuxCo2/Cu(001) trilayers the coupling strength is about a factor of three
larger than in the case of Cu4Ni8Cux Ni9/Cu(001) trilayers. From a theoretical point of view
still very little is known concerning the amplitude of the coupling. Thus, this example shows
that the absolute FMR values are well suited to be compared to theoretical calculations.

6.1.2. Influence of the spacer roughness. The influence of the spacer roughness is calculated
by simply averaging over the thickness fluctuations which are present in a rough spacer. One
ends up with an effective value of Jinter . To perform this procedure there are conditions
which have to be fulfilled. First, the lateral correlation length of the roughness ξ has to
be large enough, so that the interlayer exchange coupling is locally well defined; typically
this implies ξ > d , d being the spacer thickness. To discuss the influence of interface
roughness Cu4Ni8Cux Ni9/Cu(001) trilayers were prepared without annealing the spacer after
the deposition. This results in interfaces described in section 4. An inspection of figures 9(a)
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Figure 19. Jinter as a function of the spacer thickness dCu for trilayers having rough spacer layers.
The thin solid curve corresponds to equation (1) using both periods; for the thick solid curve only
the period of 5.88 ML was used.

and (c) shows that the lateral size of the pits on the non-annealed surfaces is on average at
least in the order of 50 Å. The roughness of the non-annealed Cu spacer exhibits an even
larger average island size. Thus, the lateral correlation length of the roughness is much larger
than the spacer thicknesses which are investigated. Then, the effective value of Jinter is given
by J̄inter = ∫

P(dCu)Jinter (dCu) dτ [40], where P(dCu) is the distribution function of the
roughness across the surface, Jinter (dCu) is the expression for the coupling without roughness
given by equation (1) and the integration has to be performed over the spacer thickness.
As shown in [40], where the integral was solved for a Gaussian distribution P(dCu), the
effect of the interface roughness is essentially to attenuate the amplitude of the oscillatory
behaviour of Jinter . If more than one oscillatory period is present, as for a Cu(001) spacer, the
roughness mostly affects the period which is of the order of (or smaller than) the amplitude
of the roughness or, in other words, the roughness acts as a low-pass filter. The results for
Cu4Ni8Cux Ni9/Cu(001) trilayers with x = 3.5, 5, 7 are shown in figure 19 together with the
theoretical curve already shown in figure 18 (thin solid curve). The thick solid curve is the
theoretical curve, for which the short period has been omitted, i.e. only the longer period is
used. The three points agree with the theoretical curve which proves the applicability of the
model discussed in [40]. In particular, the trilayer with a spacer thickness of 3.5 ML shows
ferromagnetic coupling, whereas the annealed one is antiferromagnetically coupled.

6.1.3. Influence of the temperature. The difference of Jinter from a Heisenberg exchange
can be seen from the fact that it is strongly temperature dependent. Since Jinter measures the
coupling strength it is all important to understand the mechanisms which lead to its temperature
dependence. To conclude from experimental results it is a must to measure at more than only a
few fixed temperatures. The two models introduced in section 2.1 will now be compared with
our experimental results for Ni7Cux Co2/Cu(001) trilayers with x = 5, 9. Figure 18 shows
that the trilayer with x = 5 is coupled ferromagnetically, whereas the trilayer with x = 9 is
coupled antiferromagnetically. The complete temperature dependence of Jinter is displayed
in the left-hand panel of figure 20 where Jinter is plotted as a function of T 3/2 for the two
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Figure 20. Temperature dependence of Jinter plotted as a function of T 3/2 for Ni7Cux Co2/Cu(001)

trilayers with x = 5, 9. In (a) absolute units and in (b) normalized values are shown.

cases. Jinter was deduced by the procedure described in section 5.2. In (a) absolute units
and in (b) Jinter normalized to the extrapolated T = 0 K value are shown. For both trilayers
Jinter has a linear dependence over a wide temperature range. This means that the dominating
effect to the temperature dependence of Jinter results from the excitation of thermal spin waves
at the interfaces of the ferromagnetic films which lead to a reduction of the coupling as the
temperature increases. One should not conclude that the mechanism proposed by Bruno [5]
is not present at all. The rounding of the Fermi surface with increasing temperature merely
seems not to be of importance in the temperature range of interest. It was shown in [41] that a
fit according to the Bruno model shows reasonable agreement only if unrealistic small values
for vF are used. The best fit is obtained for vF = 1.4×107 cm s−1 which is smaller by a factor
of ten than the free electron value for Cu bulk (vF = 1.57 × 108 cm s−1) and still smaller
by a factor of five than realistic values determined experimentally by de Haas–van Alphen
measurements yielding vF = 6.7 × 107 cm s−1 [42].

The model by Almeida et al [6] predicts that the coupling vanishes at the Curie temperature.
Indeed, it was found in [41] that the coupling becomes at least very small. However, the model
by Almeida et al also does not fully describe the temperature dependence as can be shown
by comparing the dependences for two trilayers with different spacer thicknesses. One finds
from figure 20 that the temperature dependence, despite being linear, is stronger for the trilayer
with the larger spacer thickness, as can be seen best in (b). The Almeida model does not give
an explanation for this behaviour, whereas the model by Bruno explicitly predicts this trend.
This experimental finding thus shows that more theoretical work is needed to understand such
a dependence on the spacer thickness. In particular, the origin of the constant a which is not
discussed in [6] needs to be specified.

6.1.4. Influence of overlayer thickness. The theory used to describe the interlayer coupling
effect as reviewed in section 2.1 predicts an oscillatory behaviour of the coupling as a function
of Jinter which is clearly found experimentally. We will show in the following that an overlayer
on top of a trilayer also influences Jinter . Usually such a capping layer is deposited on top
of layered structures to protect them from oxidation. At first sight one might not expect any
influence, but when a capping layer on top of the film structure is present, electron confinement
can take place in the overlayer. This will subsequently change the net reflection coefficient
of the topmost magnetic layer, and therefore the interlayer coupling should not only oscillate
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Figure 21. (a) FMR spectra for a Cux Ni8Cu7Ni9/Cu(001) trilayer with different cap layer
thicknesses of x = 4, 5, 7 ML. (b) Hysteresis loops for the same trilayer as shown in (a) obtained
by polar Kerr-effect measurements for x = 4, 5 ML.

as a function of the spacer thickness, but also as a function of the overlayer thickness [14].
For all Cu/Ni/Cu/Ni/Cu(001) trilayers discussed up to now a Cu cap layer of 4 ML was
used. Figure 21 shows the results of a measurement for a Cux Ni8Cu7Ni9/Cu(001) trilayer
for which the cap layer thickness was increased step by step from x = 4 to 7. The FMR
spectrum of the trilayer capped with 4 ML (figure 21(a)) is plotted with the solid curve. The
coupling of this system has already been discussed in figure 18. Instead of showing the whole
signal of the bottom Cu7Ni9/Cu(001) film, the resonance field of this film is indicated by a
vertical line for better clarity. The analysis of this film yielded an antiferromagnetic coupling
of Jinter = −0.6 µeV/atom. Upon adding only 1 ML of Cu on top of this trilayer the
FMR spectrum changes to the one shown by the dashed line. Now one clearly sees that the
acoustical mode is shifted to lower field values compared to the uncoupled system (vertical
line). Therefore, the system is coupled ferromagnetically, i.e. Jinter has reversed its sign. Upon
adding more layers of Cu, the system is again coupled antiferromagnetically as shown by the
dash–dotted line. To support the FMR results, figure 21(b) shows hysteresis loops obtained
from polar Kerr-effect measurements on the same trilayer system for cap layer thicknesses of
4 and 5 ML. For the 4 ML thick capping layer the occurrence of a flipping field of about 18 Oe
indicates the antiferromagnetic coupling between the two Ni layers [43],whereas the squarelike
loop for the 5 ML thick capping layer shows ferromagnetic coupling. Thus, consistent with
the FMR result, the change from antiferromagnetic to ferromagnetic coupling is observed.
After extracting the values of Jinter from FMR and plotting all the results as a function of
the Cu overlayer thickness one ends up with figure 22. For antiferromagnetic coupling the
values of Jinter can also be extracted from the flipping field in the Kerr-effect measurements
as discussed in detail in [43]. The results are plotted as open squares together with the FMR
values. Figure 22 shows a clear oscillatory behaviour. Compared to the amplitude of the
oscillation as a function of the spacer thickness discussed in figure 18 the amplitude is rather
small. Despite the large error bars in figure 22, the oscillatory character, i.e. the sign of the
coupling, is determined unambiguously. The results show that especially for systems for which
Jinter is close to zero a change of the overlayer thickness may lead to a change of sign in Jinter

and that one has to be careful in comparing data obtained from weakly coupled samples having
different cap layer thicknesses.
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Figure 22. Jinter as a function of the Cu cap layer thickness measured by FMR (solid squares) and
by MOKE (open squares). The solid curve corresponds to equation (1) with the amplitude scaled
to the experiment.

6.1.5. Dependence on the microwave frequency. In the following the dispersion curve of the
Cu4Ni8Cu5Ni9/Cu(001) trilayer is discussed. The measurements made at a frequency of 9 GHz
are extended by experiments using 4 GHz. The results, i.e. the measured Hres-values together
with a fit according to equation (26), are plotted in figure 23. The data are best fitted using the
values already obtained from the 9 GHz measurement discussed in section 5.2. Figure 23(a)
shows the dispersion curve for the case where the external field is aligned within the film plane.
The inset in (b) shows the spectrum taken at 4 GHz. As shown in section 5.2 this trilayer system
exhibits an easy axis of magnetization normal to the film plane. Thus, the situation is different
from the general example given in section 3.4, where a system having an in-plane easy axis was
assumed. Again different regions are observed depending on the external field value. In (a) it
can be seen that at low fields the dispersion is obviously different from the high field region.
This behaviour is explained in (b), where the equilibrium angles θ0

1,2 of the two magnetizations
are plotted as a function of H0. At small fields the two magnetizations are not aligned parallel
to each other. Thus, for the two resonances occurring at low fields at 4 GHz the magnetizations
precess not about H0, but rather about the internal field within the sample. In addition, both
resonances are of optical character which is reflected in the smaller intensity compared to the
acoustical mode located at the highest field of about 3 kOe. At 4 GHz only for the acoustical
mode the two magnetization vectors are aligned parallel to each other during the precession.
Again this is shown in (b), where starting from a field of 2.5 kOe both magnetizations are
aligned parallel to each other. At 9 GHz only two resonances are observed as discussed in
section 3.4. Both of them occur in the aligned regime, so that the clear identification of optical
and acoustical modes is possible.

6.2. Analysis of the mode linewidth

In the last paragraph the influence of the interlayer exchange coupling on the resonance field
Hres of the bilayer film has been discussed. Besides this an influence on the linewidth, i.e. on
the damping properties, arising from the presence of the second magnetic layer can be seen.
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Figure 23. Calculated dependences of (a) frequency for the optical and acoustical mode and (b) the
equilibrium angles θ0

1,2 of the two magnetizations as a function of the external field which is applied
in the film plane. The points in (a) are the measured resonance fields for f = 4, 9 GHz. The inset
in (b) shows the spectrum obtained at f = 4 GHz.

Before discussing the experimental results, a few words concerning the most frequently used
definitions of the FMR linewidth �Hpp are summarized. In the literature several forms of the
damping term within the LL equation have been proposed. The LL term, λ being the adjustable
parameter, has the form λ

M2
�M × ( �M × �H ef f ). The vector �M × ( �M × �H ef f ) is perpendicular to

�M and directed towards �H ef f . Another frequently used form is the Gilbert damping G
M

�M × d �M
dt .

In the following the Gilbert form will be used, but for small values of G, i.e. when terms in
G2 can be neglected, both expressions are equivalent [46]. The damping is added as effective
field to the LL equation of motion [18]. Then, via G or λ the linewidth can be adjusted to
match the experiment. However, such a phenomenological inclusion of damping does not give
a microscopic insight into the origins of magnetic relaxation. Since even in single magnetic
films there is still an ongoing discussion about the mechanisms of the observed �Hpp-value,
it seems to be even more complicated to understand the linewidth observed in multilayers. We
will thus show the results without the aim of giving a rigid explanation. Nevertheless, the in
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situ approach allows for a step by step investigation providing a tool to look for sources of spin
wave relaxation.

6.2.1. Influence of the coupling field. To discuss the influence of the coupling on the linewidth,
the measured values for �Hpp taken from Cu4Ni8CuxNi9/Cu(001) trilayers with different
spacer thicknesses are shown in figure 24. Two observations are made.

(i) The linewidth of both optical and acoustical modes has the tendency to increase as a
function of spacer thickness. This effect may be understood as inhomogeneous broadening
coming from variations in the spacer roughness which consequently produce a small lateral
variation in the coupling field leading to slightly different resonance fields. As a result a
broadening occurs from the overlap of the signals from different positions on the sample.
This scenario is also supported by the observation that the increase of �Hpp in trilayers
with non-annealed spacer layers was found to be larger.

(ii) Another effect which appears in figure 24 is that there is a difference in the broadening
between optical and acoustical modes. The optical mode is always more broadened with
respect to the single-layer resonance.

Moreover, as figure 24 reveals, this effect scales with the coupling strength given by Jinter in
figure 18. For large values of Jinter , e.g. for spacer thicknesses of 2 and 5 ML, the difference of
optical and acoustical mode broadening is largest. In contrast, for small coupling the �Hpp-
values for optical and acoustical modes are also close to each other, e.g. for 7 ML spacer
thickness. Thus, there seems to be an intrinsic mechanism that broadens the optical mode
much more than the acoustical one. One possible explanation of this effect is given in the
recent paper by Urban et al [44] which uses a theoretical model proposed by Berger [45].
There, it was shown that the magnetic layers in trilayer systems acquire an additional interface
damping of Gilbert type. This damping results from the transfer of angular momentum between
the magnetic films by the itinerant electrons entering the ferromagnetic layers through the
spacer and leads to additional relaxation torques, because the electrons cannot immediately
accommodate the direction of the precessing magnetization. It is not clear why the optical
mode, i.e. the mode where the two magnetizations precess out of phase, seems to be more
affected. Thus, more investigations are needed to understand this finding.

6.2.2. Temperature dependence. Figure 25 shows the experimentally observed temperature
dependence of the linewidth for Cu4Ni8Cux Ni9/Cu(001) trilayers with spacer thicknesses of
x = 5 and 12 together with the linewidth found in the bottom Cux Ni9/Cu(001) films before the
deposition of the topmost Ni layers. The single films show almost the same linewidth indicating
the good reproducibility which is achieved by our in situ growth. After the evaporation of the
topmost films the acoustical mode always has a �Hpp which is larger by about 50 G than the
one found in the single films. This may arise from a small inhomogeneous contribution due
to the roughness of the spacer which even after annealing cannot absolutely be removed as
discussed in the previous section. In addition, again the optical mode exhibits an even larger
linewidth. Now we come to the temperature dependence. First, we note that the trilayer with
a Cu spacer of 5 ML was found to have quite a strong coupling as figure 18 reveals. The
coupling for the trilayer having a Cu spacer thickness of 12 ML on the other hand is very
small, i.e. the position of the acoustical mode in the trilayer was found to be nearly at the
same position as the single resonance observed from the bottom film only. Starting from the
temperature dependence of �Hpp for the optical modes one sees that at the position where
one expects the TC of the topmost film the linewidth suddenly increases, being steeper for the
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Figure 24. Linewidth normalized to the one found for the individual Cu capped Ni films as a
function of spacer thickness for acoustical and optical modes in Cu4Ni8Cux Ni9/Cu(001) trilayers.
The curve serves as a guide to the eye.

∆

Figure 25. Linewidth as a function of temperature for acoustical and optical modes in two
Cu4Ni8Cux Ni9/Cu(001) trilayers with x = 5 and 12.

Cu4Ni8Cu12Ni9/Cu(001) trilayer. Such an effect is well known to arise from spin fluctuations
at the Curie point [46, 47]. In [48] it was shown that the presence of a coupling field may
influence the magnetic properties of the two films. It was found that for reasonable values of
Jinter the influence of the coupling field on the magnetic films can be explained only if the
magnetic fluctuations in the 2D films are properly taken into account, i.e. a mean-field approach
does not account for the effects. This means that the most important influence of the coupling
field is to suppress the spin fluctuations. The coupling is smaller for the trilayer with a Cu
spacer layer of 12 ML. Thus, the steeper increase shown in figure 25 stems from the stronger
spin fluctuations. Another observation in figure 25 is that at the point where the optical mode
intensity increases a peak is observed for �Hpp of the acoustical mode which is larger for the
Cu4Ni8Cu5Ni9/Cu(001) trilayer. This shows that the spin fluctuations in the topmost film also
influence the bottom one, so that one cannot, in principle, treat the fluctuations independently.
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7. Summary

We have shown that UHV in situ FMR is a powerful tool to study coupled ferromagnetic films,
since a step by step investigation allows us to directly compare the same system before and after
the coupling is activated via the deposition of the second magnetic layer. To analyse the spectra
we have calculated the full FMR signal for the complete out-of-plane angular range. Good
agreement was found for the resonance fields and intensities. Further, the calculation allows us
to extract the coupling strength in absolute energy units for ferro- as well as antiferromagnetic
coupling. Via the in situ approach this can be done by analysing the field shift of the modes
in the coupled system with respect to the single film and this allows us to deduce the coupling
even if only one mode is observed. Moreover, it opens a direct way to deduce the coupling,
because the influence of the anisotropies and the coupling can be separated. Our experiments
reveal that

(i) the coupling shows an oscillatory behaviour and
(ii) it is strongly temperature dependent. The most important source of this dependence arises

from the temperature dependent disorder of the magnetic moments at the interface to the
spacer due to thermally activated spin waves.

(iii) The spacer roughness which was quantitatively investigated via STM has a dramatic
influence on Jinter . It strongly suppresses the small period of the oscillatory coupling.

(iv) The effect of an overlayer is discussed. We have shown that such a layer, which usually
is deposited for an ‘inert’ protection, can even change the sign of the coupling.

(v) The dispersion relation f (H0) of the trilayers was discussed together with results from in
situ measurements at frequencies of 4 and 9 GHz.

(vi) Finally, we have presented results which show that the linewidth is influenced by the
presence of the coupling field, leading to an extra damping.

In addition, the temperature dependent linewidth of coupled layers directly reflects the
interaction between the films.
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